如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧面PAD是正三角形,且平面PAD⊥底面ABCD.(1)求证:AB⊥平面PAD(2)求直线PC与底面ABCD所成角的大小;(3)设AB=1,求点D到平面PBC的距离.
已知函数f(x)=,x∈(1,+∞).(1)求函数f(x)的单调区间;(2)函数f(x)在区间[2,+∞)上是否存在最小值,若存在,求出最小值,若不存在,请说明理由.
已知函数f(x)=axln x图象上点(e,f(e))处的切线与直线y=2x平行,g(x)=x2-tx-2.(1)求函数f(x)的解析式;(2)求函数f(x)在[n,n+2](n>0)上的最小值;(3)对一切x∈(0,e],3f(x)≥g(x)恒成立,求实数t的取值范围.
已知函数f(x)=ax+ln x,g(x)=ex.(1)当a≤0时,求f(x)的单调区间;(2)若不等式g(x)< 有解,求实数m的取值范围.
已知函数f(x)=-aln x++x(a≠0),(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x-2y=0垂直,求实数a的值;(2)讨论函数f(x)的单调性.
已知椭圆C:=1(a>b>0)的离心率与等轴双曲线的离心率互为倒数关系,直线l:x-y+=0与以原点为圆心, 以椭圆C的短半轴长为半径的圆相切.(1)求椭圆C的方程;(2)设M是椭圆的上顶点,过点M分别作直线MA,MB交椭圆于A,B两点,设两直线的斜率分别为k1,k2,且k1+k2=4,证明:直线AB过定点.