(本题满分16分)函数().(1)求函数的值域;(2)判断并证明函数的单调性;(3)判断并证明函数的奇偶性;(4)解不等式.
如图所示,已知PA与⊙O相切,A为切点,PBC为割线,CD∥AP,AD与BC相交于点E,F为CE上一点,且DE2=EF·EC.(1)求证:∠P=∠EDF;(2)求证:CE·EB=EF·EP;(3)若CE∶BE=3∶2,DE=6,EF=4,求PA的长.
如图所示,E是⊙O内两弦AB和CD的交点,直线EF∥CB,交AD的延长线于F,FG切⊙O于G.求证:(1)△DFE∽△EFA;(2)EF=FG.
如图,已知C点在圆O直径BE的延长线上,CA切圆O于A点,DC是∠ACB的平分线交AE于点F,交AB于D点.(1)求∠ADF的度数;(2)AB=AC,求AC∶BC.
如图所示,圆内的两条弦AB、CD相交于圆内一点P,已知PA=PB=4,PC=PD.求CD的长.
如图所示,已知AB是⊙O的直径,C为圆上任意一点,过C的切线分别与过A、B两点的切线交于P、Q.求证:AB2=4AP·BQ.