(本小题满分10分)选修4-4:坐标系与参数方程已知直线经过点,倾斜角,圆C的极坐标方程为(1)写出直线的参数方程,并把圆的方程化为直角坐标方程;(2)设与圆相交于两点,求点到两点的距离之积.
已知函数f(x)=ax+ (x≠0,常数a∈R).(1)讨论函数f(x)的奇偶性,并说明理由;(2)若函数f(x)在x∈[3,+∞)上为增函数,求a的取值范围.
在四棱锥P-ABC中,底面ABCD是矩形,PA平面ABCD,M,N分别是AB,PC的中点。(1)求证:MN∥平面PAD。(2)求证:MNCD.(3)若PD与平面ABCD所成的角为450,求证:MN平面PCD.
当k为何值时,直线3x-(k+2)y+k+5=0与直线kx+(2k-3)y+2=0,(1).相交(2).垂直(3).平行(4).重合。
(本题满分14分)设,分别为椭圆的左右焦点,过的直线与椭圆相交于,两点,直线的倾斜角为,到直线的距离为.(Ⅰ)求椭圆的焦距;(Ⅱ)如果,求椭圆的方程.
(本题满分12分)求使函数的图像全在轴上方成立的充要条件.