(本小题满分12分)已知数列(1)证明数列为等差数列,并求的通项公式;(2)设,求数列的前项和。
以椭圆+y2=1(a>1)短轴的一个端点B(0,1)为直角顶点作椭圆的内接等腰直角三角形,问这样的直角三角形是否存在?如果存在,请说明理由,并判断最多能作出几个这样的三角形;如果不存在,请说明理由.
已知椭圆中心在原点,焦点在横轴上,焦距为4,且和直线3x+2y-16=0相切,求椭圆方程.
给定四条曲线:①x2+y2=;②+=1;③x2+=1;④+y2=1.其中与直线x+y-5=0仅有一个交点的曲线是( )
设椭圆上存在一点P,它到椭圆中心和长轴一个端点的连线互相垂直,求椭圆离心率的取值范围.
若P(x,y)满足+y2=1(y≥0),求的最大值、最小值.