等差数列中,且成等比数列,求数列前20项的和.
在平面直角坐标系中,已知抛物线:,在此抛物线上一点到焦点的距离是3.(1)求此抛物线的方程;(2)抛物线的准线与轴交于点,过点斜率为的直线与抛物线交于、两点.是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,说明理由.
如图,在四棱锥中,底面是矩形,平面,,,依次是的中点.(1)求证:;(2)求直线与平面所成角的正弦值.
如图,已知长方形的两条对角线的交点为,且与所在的直线方程分别为.(1)求所在的直线方程; (2)求出长方形的外接圆的方程.
已知命题函数在区间上是单调递增函数;命题不等式对任意实数恒成立.若是真命题,且为假命题,求实数的取值范围.
已知椭圆的右焦点为,为上顶点,为坐标原点,若△的面积为,且椭圆的离心率为.(1)求椭圆的方程;(2)是否存在直线交椭圆于,两点, 且使点为△的垂心?若存在,求出直线的方程;若不存在,请说明理由.