(本小题满分12分)甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环,且每次射击成绩互不影响.射击环数的频率分布条形图如下:若将频率视为概率,回答下列问题:(I)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率;(II)若甲、乙两运动员各自射击1次,表示这2次射击中击中9环以上(含9环)的次数,求的分布列及.
如图,四边形ABCD为平行四边形,四边形ADEF是正方形,且BD⊥平面CDE,H是BE 的中点,G是AE,DF的交点.(1)求证:GH∥平面CDE;(2)求证:面ADEF⊥面ABCD.
在平面直角坐标系中,已知点A(-2,1),直线.(1)若直线过点A,且与直线平行,求直线的方程;(2)若直线过点A,且与直线垂直,求直线的方程.
(本小题满分14分)已知圆:,直线.(1)若直线l与圆交于不同的两点,当时,求的值;(2)若,是直线l上的动点,过作圆的两条切线、,切点为、,探究:直线是否过定点;(3)若、为圆:的两条相互垂直的弦,垂足为,求四边形的面积的最大值.
(本小题满分14分)在棱长为2的正方体中,设是棱的中点。(1)求证:;(2)求证:平面;(3)求三棱锥的体积.
(本小题满分13分)已知等差数列的公差它的前项和为,若且成等比数列.(1)求数列的通项公式;(2)设数列的前项和为,求证:.