甲,乙两人进行射击比赛,每人射击6次,他们命中的环数如下表:
(1)根据上表中的数据,判断甲,乙两人谁发挥较稳定;(2)把甲6次射击命中的环数看成一个总体,用简单随机抽样方法从中抽取两次命中的环数组成一个样本,求该样本平均数与总体平均数之差的绝对值不超过0.5的概率.
已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线方程.(2)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程.
已知曲线y=x3+,(1)求曲线过点P(2,4)的切线方程.(2)求曲线的斜率为4的切线方程.
求下列各函数的导数:(1)y=(x+1)(x+2)(x+3).(2)y=+.(3)y=e-xsin2x.
某投资公司投资甲、乙两个项目所获得的利润分别是P(亿元)和Q(亿元),它们与投资额t(亿元)的关系有经验公式P=,Q=t,今该公司将5亿元投资于这两个项目,其中对甲项目投资x(亿元),投资这两个项目所获得的总利润为y(亿元).求:(1)y关于x的函数表达式.(2)总利润的最大值.
为了保护环境,发展低碳经济,某单位在国家科研部门的支持下,进行技术攻关,新上了把二氧化碳处理转化为一种可利用的化工产品的项目,经测算,该项目月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为y=且每处理一吨二氧化碳得到可利用的化工产品价值为200元,若该项目不获利,国家将给予补偿.(1)当x∈[200,300]时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则国家每月至少需要补贴多少元才能使该项目不亏损?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?