设函数,对任意实数都有(Ⅰ)求的值;(Ⅱ)若的值;(Ⅲ)在(Ⅱ)的条件下,猜想的表达式,并用数学归纳法加以证明.
设f(x)=ln(x2+1),g(x)=x2-.(1)求F(x)=f(x)-g(x)的单调区间,并证明对[-1,1]上的任意x1,x2,x3,都有F(x1)+F(x2)>F(x3);(2)将y=f(x)的图像向下平移a(a>0)个单位,同时将y=g(x)的图像向上平移b(b>0)个单位,使它们恰有四个交点,求的取值范围.
已知函数f(x)=ex,x∈R.(1)若直线y=kx+1与f(x)的反函数的图像相切,求实数k的值;(2)设x>0,讨论曲线y=f(x)与曲线y=mx2(m>0)公共点的个数.
设函数f(x)=x2+aln(x+1)有两个极值点x1,x2,且x1<x2.(1)求实数a的取值范围;(2)当a=时,判断方程f(x)=-的实数根的个数,并说明理由.
一家商场为了确定营销策略,进行了投入促销费用x和商场实际销售额y的试验,得到如下四组数据.
(1)在下面的直角坐标系中,画出上述数据的散点图,并据此判断两个变量是否具有较好的线性相关性;(2)求出x,y之间的回归直线方程=x+;(3)若该商场计划营销额不低于600万元,则至少要投入多少万元的促销费用?
随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示. (1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班样本的方差.