设函数,对任意实数都有(Ⅰ)求的值;(Ⅱ)若的值;(Ⅲ)在(Ⅱ)的条件下,猜想的表达式,并用数学归纳法加以证明.
(本小题满分13分)已知函数(1)求函数的最小正周期和图象的对称轴方程;(2)求函数上的值域。
(本不上题满分13分)已知公差不为零的等差数列6项和为60,且的等比中项。(1)求数列的通项公式;(2)若数列
在正三角形ABC中,E、F、P分别是AB、AC、BC边上的点,满足AE:EB=CF:FA=CP:PB=1:2(如图1)。将△AEF沿EF折起到的位置,使二面角A1-EF-B成直二面角,连结A1B、A1P(如图2)(Ⅰ)求证:A1E⊥平面BEP;(Ⅱ)求二面角A1-BP-E的大小。
如图,A1A是圆柱的母线,AB是圆柱底面圆的直径, C是底面圆周上异于A,B的任意一点,A1A= AB=2. (Ⅰ)求证: BC⊥平面A1AC; (Ⅱ)求三棱锥A1-ABC的体积的最大值.
如图,在四棱锥中,底面为直角梯形,,, 底面,且,分别为、的中点。(Ⅰ)求证:;(Ⅱ)求与平面所成角的正弦值。