设函数,对任意实数都有(Ⅰ)求的值;(Ⅱ)若的值;(Ⅲ)在(Ⅱ)的条件下,猜想的表达式,并用数学归纳法加以证明.
设a是实数,讨论关于x的方程lg(x-1)+lg(3-x)=lg(a-x)的实数解的个数.
设函数f(x)=-ax2,a∈R.(1)当a=2时,求函数f(x)的零点;(2)当a>0时,求证:函数f(x)在(0,+∞)内有且仅有一个零点;(3)若函数f(x)有四个不同的零点,求a的取值范围.
已知关于x的二次方程x2+2mx+2m+1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求实数m的取值范围;(2)若方程两根均在区间(0,1)内,求实数m的取值范围.
(1)已知α、β是方程x2+(2m-1)x+4-2m=0的两个实根,且α<2<β,求m的取值范围;(2)若方程x2+ax+2=0的两根都小于-1,求a的取值范围.
已知f(x)=2x,g(x)=3-x2,试判断函数y=f(x)-g(x)的零点个数.