设函数,对任意实数都有(Ⅰ)求的值;(Ⅱ)若的值;(Ⅲ)在(Ⅱ)的条件下,猜想的表达式,并用数学归纳法加以证明.
正三棱锥底面边长为6,高为,求这个正三棱锥的侧面积
如图,空间四边形SABC中,SO⊥平面ABC,O为△ABC的垂心。求证:平面SOC ⊥平面SAB。
如图,P为△ABC所在平面外一点,AP=AC,BP=BC,D为PC中点,直线PC与平面ABD垂直吗?为什么?
如图,D,E分别为三棱锥P—ABC的棱AP、AB上的点,且AD:DP=AE:EB=1:3.求证:DE//平面PBC
(本小题满分14分)有人玩掷正四面体骰子走跳棋的游戏,已知正四面体骰子四个面上分别印有,棋盘上标有第0站、第1站、第2站、…、第100站.一枚棋子开始在第0站,棋手每掷一次骰子,若掷出后骰子为面,棋子向前跳2站,若掷出后骰子为中的一面,则棋子向前跳1站,直到棋子跳到第99站(胜利大本营)或第100站(失败大本营)时,该游戏结束.设棋子跳到第n站的概率为().(Ⅰ)求;(Ⅱ)求证:;(Ⅲ)求玩该游戏获胜的概率.