设函数,对任意实数都有(Ⅰ)求的值;(Ⅱ)若的值;(Ⅲ)在(Ⅱ)的条件下,猜想的表达式,并用数学归纳法加以证明.
(本小题满分12分)在中,内角的对边分别为,.(Ⅰ)若,,求和;(Ⅱ) 若,且的面积为2,求的大小.
(本小题满分12分)某中学刚搬迁到新校区,学校考虑,若非住校生上学路上单程所需时间人均超过20分钟,则学校推迟5分钟上课.为此,校方随机抽取100个非住校生,调查其上学路上单程所需时间(单位:分钟),根据所得数据绘制成如下频率分布直方图,其中时间分组为,,,,.(Ⅰ)求频率分布直方图中的值;(Ⅱ)从统计学的角度说明学校是否需要推迟5分钟上课;(Ⅲ)若从样本单程时间不小于30分钟的学生中,随机抽取2人,求恰有一个学生的单程时间落在上的概率.
(本小题满分12分)设数列的前项和为,且,.(Ⅰ)求数列的通项公式;(Ⅱ)若数列为等差数列,且,公差为.当时,比较与的大小.
(本小题满分14分)已知函数.(1)当时,求函数图象在点处的切线方程;(2)当时,讨论函数的单调性;
(本小题满分13分)已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元。设该公司一年内生产该品牌服装x千件并全部销售完,每千件的销售收入为R万元,且R(1)写出年利润(万元)关于年产量(千元)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得的年利润最大。(注:年利润=年销售收入-年总成本)