设函数,对任意实数都有(Ⅰ)求的值;(Ⅱ)若的值;(Ⅲ)在(Ⅱ)的条件下,猜想的表达式,并用数学归纳法加以证明.
已知集合A={x|x2﹣x﹣2>0},函数g(x)=的定义域为集合B,(1)求A∩B和A∪B;(2)若C={x|4x+p<0},且C⊆A,求实数P的取值范围.
已知函数f(x)=ax2+bx+1(a,b∈R且a≠0),F(x)=.(1)若f(﹣1)=0,且函数f(x)的值域为[0,+∞),求F(x)的解析式;(2)在(1)的条件下,当x∈[﹣2,2]时,g(x)=f(x)﹣kx是单调函数,求实数k的取值范围;(3)设mn<0,m+n>0,a>0,且f(x)是偶函数,判断F(m)+F(n)是否大于零.
二次函数f(x)的图象顶点为A(1,16),且图象在x轴上截得线段长为8.(1)求函数f(x)的解析式;(2)令g(x)=(2﹣2a)x﹣f(x);①若函数g(x)在x∈[0,2]上是单调增函数,求实数a的取值范围;②求函数g(x)在x∈[0,2]的最小值.
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+b﹣1(a≠0).(1)当a=1,b=﹣2时,求f(x)的不动点;(2)若对于任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围.
已知定义域为R的奇函数f(x),当x>0时,f(x)=x2﹣3.(1)当x<0时,求函数f(x)的解析式; (2)求函数f(x)在R上的解析式; (3)解方程f(x)=2x.