设函数,对任意实数都有(Ⅰ)求的值;(Ⅱ)若的值;(Ⅲ)在(Ⅱ)的条件下,猜想的表达式,并用数学归纳法加以证明.
已知直线与双曲线; (1)当a为何值时,直线与双曲线有一个交点;(2)直线与双曲线交于P、Q两点且以PQ为直径的圆过坐标原点,求a值。
(本小题满分14分)如图,椭圆的顶点为焦点为 S□ = 2S□.(Ⅰ)求椭圆C的方程;(Ⅱ)设直线过P(1,1),且与椭圆相交于A,B两点,当P是AB的中点时,求直线的方程.(Ⅲ)设n为过原点的直线,是与n垂直相交于P点、与椭圆相交于A,B两点的直线,,是否存在上述直线使以AB为直径的圆过原点?若存在,求出直线的方程;若不存在,请说明理由.
(本小题满分12分)如图,已知直线与抛物线相交于两点,与轴相交于点,若.(Ⅰ)求证:点的坐标为(1,0);(Ⅱ)求△AOB的面积的最小值.
(本小题满分12分)给定两个命题,:对任意实数都有恒成立;:关于的方程有实数根.如果∨为真命题,∧为假命题,求实数的取值范围.
(本小题满分12分)已知数列的前项和为(Ⅰ)求数列的通项公式;(Ⅱ)若,求数列的前项和.