设函数,对任意实数都有(Ⅰ)求的值;(Ⅱ)若的值;(Ⅲ)在(Ⅱ)的条件下,猜想的表达式,并用数学归纳法加以证明.
(本小题满分12分)已知以点C (t∈R,t≠0)为圆心的圆与x轴交于点O、A两点,与y轴交于点O,B,其中O为原点. (1)求证:△AOB的面积为定值; (2)设直线2x+y-4=0与圆C交于点M,N,若,求圆C的方程; (3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求的最小值及此时点P的坐标.
(本小题满分12分)如图,在四棱锥中,底面为矩形,侧面底面,.(1)求证:面;(2)设为等边三角形,求直线与平面所成角的大小.
(本小题满分12分)已知关于x,y的方程C:. (1)当m为何值时,方程C表示圆. (2)若圆C与直线: x+2y-4=0相交于M,N两点,且MN=,求m的值.
(本小题满分12分)如图所示,正方形和矩形所在平面相互垂直,是的中点.(1)求证:;(2)若直线与平面成45o角,求异面直线与所成角的余弦值.
(本小题满分12分)已知直线,(1)若直线过点(3,2)且,求直线的方程;(2)若直线过与直线的交点,且,求直线的方程.