设函数,对任意实数都有(Ⅰ)求的值;(Ⅱ)若的值;(Ⅲ)在(Ⅱ)的条件下,猜想的表达式,并用数学归纳法加以证明.
如图:PA⊥平面ABCD,ABCD是矩形,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动(Ⅰ)求三棱锥E-PAD的体积;(Ⅱ)当点E为BC的中点时,试判断EF与平面PAC的位置关系,并说明理由;(Ⅲ)证明:无论点E在边BC的何处,都有PE⊥AF
已知的三个顶点(4,0),(8,10),(0,6).(Ⅰ)求过A点且平行于的直线方程;(Ⅱ)求过点且与点距离相等的直线方程。
已知函数 .(1)判断函数在的单调性并用定义证明;(2)令,求在区间的最大值的表达式.
已知向量( 为实数).(1)时,若,求 ;(2)若,求的最小值,并求出此时向量在方向上的投影.
已知点是函数,)一个周期内图象上的两点,函数的图象与轴交于点,满足.(1)求的表达式;(2)求函数在区间内的零点.