设函数,对任意实数都有(Ⅰ)求的值;(Ⅱ)若的值;(Ⅲ)在(Ⅱ)的条件下,猜想的表达式,并用数学归纳法加以证明.
角坐标系中,已知向量,又点(1)若且,求向量;(2)若向量与向量共线,当时,且取最大值为4时,求
已知向量,,函数.(1)求函数定义域及最小正周期;(2)求函数的单调减区间.
已知函数.(1)求函数的极值;(2)证明:当时,;(3)证明:对任意给定的正数,总存在,使得当,恒有.
已知椭圆长轴的一个端点为圆的圆心,且点为椭圆上一点.(1)求椭圆的方程与离心率;(2)过椭圆的焦点作斜率为的直线交椭圆于点,请问以为直径的圆能否过坐标原点,若能求出此时的值,若不能请说明理由.
若各项都不相等的数列满足,(且为常数),且数列为等比数列.(1)求的值;(2)若数列,为数列的前项和,证明: