设函数,对任意实数都有(Ⅰ)求的值;(Ⅱ)若的值;(Ⅲ)在(Ⅱ)的条件下,猜想的表达式,并用数学归纳法加以证明.
(本小题满分10分)已知函数在定义域上为增函数,且满足(1)求的值 (2)解不等式
已知椭圆的中心在原点,焦点在轴上,点、分别是椭圆的左、右焦点,在椭圆的右准线上的点,满足线段的中垂线过点.直线:为动直线,且直线与椭圆交于不同的两点、.(Ⅰ)求椭圆C的方程;(Ⅱ)若在椭圆上存在点,满足(为坐标原点),求实数的取值范围;(Ⅲ)在(Ⅱ)的条件下,当取何值时,的面积最大,并求出这个最大值.
根据如图所示的程序框图,将输出的x、y值依次分别记为;(Ⅰ)求数列的通项公式;(Ⅱ)写出y1,y2,y3,y4,由此猜想出数列{yn}的一个通项公式yn,并证明你的结论;(Ⅲ)求
已知函数 (R).(Ⅰ) 当时,求函数的极值;(Ⅱ)若函数的图象与轴有且只有一个交点,求的取值范围.
如图,在三棱拄中,侧面,已知 (Ⅰ)试在棱(不包含端点上确定一点的位置,使得;(Ⅱ) 在(Ⅰ)的条件下,求二面角的平面角的正切值.