已知函数 f ( x ) = x , g ( x ) = a ln x , a ∈ R
(Ⅰ)若曲线 y = f ( x ) 与曲线 y = g ( x ) 相交,且在交点处有共同的切线,求 a 的值和该切线方程;
(Ⅱ)设函数 h ( x ) = f ( x ) - g ( x ) ,当 h ( x ) 存在最小值时,求其最小值 φ ( a ) 的解析式;
(Ⅲ)对(Ⅱ)中的 φ ( a ) 和任意的 a > 0 , b > 0 ,证明: φ ` = ( a + b ) 2 ≤ φ ` ( a ) + φ ` ( b ) 2 ≤ φ ` ( 2 a b a + b ) .
(本题16分) 已知公差不为0的等差数列{}的前4项的和为20,且成等比数列; (1)求数列{}通项公式;(2)设,求数列{}的前n项的和; (3)在第(2)问的基础上,是否存在使得成立?若存在,求出所有解;若不存在,请说明理由.
(本题16分)如图,在城周边已有两条公路在点O处交汇,且它们的夹角为.已知, 与公路夹角为.现规划在公路上分别选择两处作为交汇点(异于点O)直接修建一条公路通过城.设,. (1)求出关于的函数关系式并指出它的定义域; (2)试确定点A,B的位置,使△的面积最小.
(本题14分)已知等差数列满足,的前n项和为,求的通项公式及;(2)若,求数列的前n项和.
(本题14分)已知a,b实数,设函数. (1)若关于x的不等式的解集为,求实数的值; (2)设b为已知的常数,且,求满足条件的a的范围.
(本题14分)在中,角、、的对边分别是,,,已知. (1)求角的值;(2)若,求.