已知二次函数。(1)若的解集为,求实数的值;(2)若满足,且关于的方程的两个实根分别在区间内,求实数的取值范围。
曲线是平面内到直线和直线的距离之积等于常数的点的轨迹,设曲线的轨迹方程.(1)求曲线的方程;(2)定义:若存在圆使得曲线上的每一点都落在圆外或圆上,则称圆为曲线的收敛圆.判断曲线是否存在收敛圆?若存在,求出收敛圆方程;若不存在,请说明理由.
选修4—5:不等式选讲己知长方体的三条棱长分别为a、b、c,其外接球的半径为(1)求长方体体积的最大值:(2)设,求的最大值
选修4—4:坐标系与参数方程极坐标系的极点为直角坐标系的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同. 已知曲线C的极坐标方程为,斜率为的直线交y轴于点.(1)求C的直角坐标方程,的参数方程;(2)直线与曲线C交于A、B两点,求.
选修4-1:几何证明选讲如图,已知圆上的,过C点的圆的切线与BA的延长线交于E点.(Ⅰ)求证:∠ACE=∠BCD;(Ⅱ)若BE=9,CD=1,求BC的长.
已知函数,其中常数.(Ⅰ)当时,求函数的极值点;(Ⅱ)证明:对任意恒成立;(Ⅲ)对于函数图象上的不同两点,如果在函数图象上存在点(其中),使得在点M处的切线∥AB,则称直线AB存在“伴侣切线”.特别地,当,又称直线AB存在“中值伴侣切线”.试问:当时,对于函数图象上不同两点A、B,直线AB是否存在“中值伴侣切线”,并证明你的结论.