如图,已知底角为45o的等腰梯形ABCD,底边BC长为7cm,腰长为,当一条垂直于底边BC(垂足为F,不与B,C重合)的直线L从左至右移动时,直线L把梯形分成两部分,令BF=x,左边部分的面积y.(1)写出函数y= f(x)的解析式;(2)求出y= f(x)的定义域,值域.
已知点、和动点满足:, 且(I)求动点的轨迹的方程;(II)设过点的直线交曲线于、两点, 若的面积等于,求直线的方程.
设函数对的任意实数,恒有成立.(I)求函数的解析式;(II)用函数单调性的定义证明函数在上是增函数
某家报刊销售点从报社买进报纸的价格是每份0.35元,卖出的价格是每份0.50元,卖不掉的报纸还可以每份0.08元的价格退回报社.在一个月(30天)里,有20天每天可以卖出400份,其余10天每天只能卖出250份.设每天从报社买进的报纸的数量相同,则应该每天从报社买进多少份,才能使每月所获得的利润最大?并计算该销售点一个月最多可赚得多少元?
已知求不等式的解集.
已知若.(I)求函数的最小正周期;(II)若求函数的最大值和最小值.