(本题满分14分)口袋中有个白球和3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X.若,求:(1)n的值;(2)X的概率分布与数学期望.
已知函数 (Ⅰ)若在上单调递增,求的取值范围; (Ⅱ)若定义在区间D上的函数对于区间D上的任意两个值总有以下不等式成立,则称函数为区间D上的“下凸函数”. 试证当时,为“下凸函数”.
中心在原点,焦点在x轴上的椭圆C的离心率为,且经过点P. (1)求C的标准方程; (2)直线与C交于A、B两点,M为AB中点,且AB=2MP.请问直线是否经过某个定点,如果经过定点,求出点的坐标;如果不过定点,请说明理由.
已知. (1)求极值; (2)
平面坐标系中,A,B坐标为A(-3,0),B(3,0),点P(x,y)满足. (1)求点P的轨迹方程C; (2) 如果过A的一条直线与C交于M,N两点,且MN=6,求的方程
等差数列不是常数列,且,若构成等比数列. (1)求; (2)求数列前n项和