已知圆C的圆心在坐标原点,且过点M().(1)求圆C的方程;(2)已知点P是圆C上的动点,试求点P到直线的距离的最小值;(3)若直线l与圆C相切,且l与x,y轴的正半轴分别相交于A,B两点,求△ABC的面积最小时直线l的方程.
如下图,在三棱锥中,底面,点为以为直径的圆上任意一动点,且,点是的中点,且交于点. (1)求证:面; (2)当时,求二面角的余弦值.
从天气网查询到邯郸历史天气统计(2011-01-01到2014-03-01)资料如下: 自2011-01-01到2014-03-01,邯郸共出现:多云天,晴天,雨天,雪天,阴天,其它2天,合计天数为:天. 本市朱先生在雨雪天的情况下,分别以的概率乘公交或打出租的方式上班(每天一次,且交通方式仅选一种),每天交通费用相应为元或元;在非雨雪天的情况下,他以的概率骑自行车上班,每天交通费用元;另外以的概率打出租上班,每天交通费用元.(以频率代替概率,保留两位小数. 参考数据:) (1)求他某天打出租上班的概率; (2)将他每天上班所需的费用记为(单位:元),求的分布列及数学期望.
已知函数. (1)求函数的最小正周期及在区间的最大值; (2)在中,、、所对的边分别是、、,,,求周长的最大值.
已知函数对任意都满足,且,数列满足:,. (Ⅰ)求及的值; (Ⅱ)求数列的通项公式; (Ⅲ)若,试问数列是否存在最大项和最小项?若存在,求出最大项和最小项;若不存在,请说明理由.
已知椭圆的中心在原点,焦点在轴上,离心率为,右焦点到右顶点的距离为. (Ⅰ)求椭圆的标准方程; (Ⅱ)若直线与椭圆交于两点,是否存在实数,使成立?若存在,求的值;若不存在,请说明理由.