设函数f(x)定义在(0,+∞)上,f(1)=0,导函数,.(1)求的单调区间和最小值;(2)讨论与的大小关系;(3)是否存在x0>0,使得|g(x)﹣g(x0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.
(本小题满分12分)设向量,,其中. (1)请列出有序数组的所有可能结果; (2)记“使得成立的”为事件,求事件发生的概率.
(本小题满分12分)如图,直三棱柱,底面中,,,棱,分别是的中点. (1)求证:; (2)求直线与平面所成的角的正弦值.
已知椭圆的焦点坐标是,,过点垂直于长轴的直线交椭圆与两点, 且. (1)求椭圆的方程. (2)过的直线与椭圆交于不同的两点, 则的内切圆面积是否存在最大值?若存在, 则求出这个最大值及此时的直线方程; 若不存在,请说明理由.
已知在如图的多面体中,⊥底面,,,,是的中点. (1)求证:平面; (2)求证:平面; (3)求此多面体的体积.
好利来蛋糕店某种蛋糕每个成本为元,每个售价为()元,该蛋糕年销售量为万个,若已知与成正比,且售价为元时,年销售量为万个. (1)求该蛋糕年销售利润关于售价的函数关系式; (2)求售价为多少时,该蛋糕的年利润最大,并求出最大年利润.