2010年4月14日清晨我国青海省玉树县发生里氏7.1级强震。国家抗震救灾指挥部迅速成立并调拨一批救灾物资从距离玉树县400千米的某地A运往玉树县,这批救灾物资随17辆车以千米/小时的速度匀速直达灾区,为了安全起见,每两辆车之间的间距不得小于千米。设这批救灾物资全部运送到灾区(不考虑车辆的长度)所需要的时间为小时。求这批救灾物资全部运送到灾区所需要的最短时间,并指出此时车辆行驶的速度。
如图,已知四棱锥P—ABCD中,底面ABCD为菱形,PA平面ABCD,,BC=1,E为CD的中点,PC与平面ABCD成角。(1)求证:平面EPB平面PBA;(2)求二面角P-BD-A 的余弦值
已知},,若,求实数的取值范围。
(本题满分12分)已知函数,,其中,设.(1)判断的奇偶性,并说明理由;(2)若,求使成立的x的集合。
在正四棱柱ABCD-A1B1C1D1中,E为CC1的中点. (1)求证:AC1∥平面BDE;(2)求异面直线A1E与BD所成角。
求过直线2x+3y+5=O和直线2x+5y+7=0的交点,且与直线x+3y=0平行的直线的方程,并求这两条平行线间的距离。