已知函数满足,是不为的实常数。(1)若函数是周期函数,写出符合条件的值;(2)若当时,,且函数在区间上的值域是闭区间,求的取值范围;(3)若当时,,试研究函数在区间上是否可能是单调函数?若可能,求出的取值范围;若不可能,请说明理由。
(本小题满分12分)已知等差数列的首项,公差,前项和为,, (Ⅰ)求数列的通项公式; (Ⅱ)设数列前项和为,求
(本小题满分10分) 选修4—5:不等式选讲已知关于的不等式,其解集为. (Ⅰ)求的值; (Ⅱ)若,均为正实数,且满足,求的最小值.
(本小题满分10分) 选修4—4:坐标系与参数方程 已知极坐标系的极点在直角坐标系的原点处,极轴与轴的正半轴重合,直线的极坐标方程为:,曲线的参数方程为: (Ⅰ)写出直线的直角坐标方程; (Ⅱ)求曲线上的点到直线的距离的最大值.
(本小题满分12分)已知椭圆的两焦点与短轴的一个端点的连线构成等腰直角三角形,直线与以椭圆的右焦点为圆心,以椭圆的长半轴长为半径的圆相切. (Ⅰ)求椭圆的方程; (Ⅱ)设为椭圆上一点,若过点的直线与椭圆相交于不同的两点和,满足(为坐标原点),求实数的取值范围.
(本小题满分12分)如图,已知四棱锥的底面为菱形,,,. (Ⅰ)求证:; (Ⅱ)求二面角的余弦值.