是关于的一元二次方程的两个实根,又, 求的解析式及此函数的定义域.
(本小题满分12分)如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,,E,F分别是BC, PC的中点.(1)证明:AE⊥PD; (2)若H为PD上的动点,EH与平面PAD所成最大角的正切值为,求二面角E—AF—C的余弦值.
(本小题满分12分)已知抛物线:,焦点为,其准线与轴交于点;椭圆:分别以为左、右焦点,其离心率;且抛物线和椭圆的一个交点记为.(1)当时,求椭圆的标准方程;(2)在(1)的条件下,若直线经过椭圆的右焦点,且与抛物线相交于两点,若弦长等于的周长,求直线的方程.
(本小题满分12分)如图,四边形ABCD是边长为1的正方形,, ,且MD=NB=1,E为BC的中点求异面直线NE与AM所成角的余弦值在线段AN上是否存在点S,使得ES平面AMN?若存在,求线段AS的长;若不存在,请说明理由
(本小题满分12分)已知命题: 表示焦点在轴上的椭圆,命题:表示双曲线.若和有且仅有一个正确,求的取值范围.
(本小题满分10分) 已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,(1)求双曲线的焦点坐标;(2)求双曲线的标准方程.