(本小题满分12分)如图,斜三棱柱,已知侧面与底面ABC垂直且∠BCA =90°,∠,=2,若二面角为30°. (Ⅰ)证明; (Ⅱ)求与平面所成角的正切值;(Ⅲ)在平面内找一点P,使三棱锥为正三棱锥,并求P到平面距离.
已知函数. ⑴若,解方程; ⑵若,求的单调区间; ⑶若存在实数,使,求实数的取值范围 .
已知定义域为R的函数是奇函数。 ⑴求的值;并判定函数单调性(不必证明)。 ⑵若对于任意的,不等式恒成立,求的取值范围。
某租赁公司出租同一型号的设备40套,当每套月租金为270元时,恰好全部租出,在此基础上,每套月租金每增加10元,就少租出1套设备,而未租出的设备每月需支付各种费用每套20元,设每套设备实际月租金为元,月收益为元(总收益=设备租金收入—未租出设备支出费用)。 ⑴求与的函数关系式; ⑵当为何值时,月收益最大?最大月收益是多少?
.已知函数 ⑴求函数的定义域; ⑵求使的的取值范围。
已知:全集,,; ⑴若,求,; ⑵若,求:实数的取值范围。