(本小题满分12分)如图,斜三棱柱,已知侧面与底面ABC垂直且∠BCA =90°,∠,=2,若二面角为30°. (Ⅰ)证明; (Ⅱ)求与平面所成角的正切值;(Ⅲ)在平面内找一点P,使三棱锥为正三棱锥,并求P到平面距离.
已知抛物线的顶点在坐标原点,它的准线经过双曲线:的一个焦点且垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是.(Ⅰ)求抛物线的方程及其焦点的坐标; (Ⅱ)求双曲线的方程及其离心率.
三棱柱中,分别是、上的点,且,。设,,.(Ⅰ)试用表示向量;(Ⅱ)若,,,求MN的长.。
设命题:方程表示的图象是双曲线;命题:,.求使“且”为真命题时,实数的取值范围.
已知椭圆.,分别为椭圆的左,右焦点,, 分别为椭圆的左,右顶点.过右焦点且垂直于轴的直线与椭圆在第一象限的交点为.(1) 求椭圆的标准方程;(2) 直线与椭圆交于,两点, 直线与交于点.当直线变化时, 点是否恒在一条定直线上?若是,求此定直线方程;若不是,请说明理由.
已知函数(a∈R).(1)当时,求的极值;(2)当时,求单调区间;(3)若对任意及,恒有成立,求实数m的取值范围.