已知抛物线的顶点在坐标原点,它的准线经过双曲线:的一个焦点且垂直于的两个焦点所在的轴,若抛物线与双曲线的一个交点是.(Ⅰ)求抛物线的方程及其焦点的坐标; (Ⅱ)求双曲线的方程及其离心率.
已知,, (1)当时,求的单调区间 (2)若在上是递减的,求实数的取值范围; (3)是否存在实数,使的极大值为3?若存在,求的值;若不存在,请说明理由.
已知四棱锥的底面为直角梯形,,底面,且,,是的中点. (1)证明:面面; (2)求与所成的角的余弦值; (3)求二面角的正弦值.
已知函数,(). (1)若x=3是的极值点,求在[1,a]上的最小值和最大值; (2)若在时是增函数,求实数a的取值范围.
在中,,,. (1)求长; (2)求的值.
已知定义在区间上的函数y=f(x)的图象关于直线x=-对称,当x∈时,函数f(x)=Asin(ωx+φ)的图象如图所示. (1)求函数y=f(x)在上的表达式; (2)求方程f(x)=的解.