袋子里有完全相同的3只红球和4只黑球,今从袋子里随机取球.(Ⅰ)若有放回地取3次,每次取一个球,求取出2个红球1个黑球的概率;(Ⅱ)若无放回地取3次,每次取一个球,若取出每只红球得2分,取出每只黑球得1分,求得分的分布列和数学期望.
(本小题满分12分)口袋中装有质地大小完全的5个球,编号分别为1,2,3,4,5,甲、乙两人玩一种游戏:甲先摸一个球,记下编号,放回后乙再摸一个球,记下编号。如果两个编号的和为偶数就算甲胜,否则算乙胜。 (1)求甲胜且编号的和为6的事件发生的概率; (2)这种游戏规则公平吗?说明理由。
(本小题满分12分) 已知向量,函数 (1)求的单调递增区间; (2)当时, 若求的值。
(本小题满分12分) 已知向量与互相垂直,其中。 (1)求和的值; (2)若,,求的值。
(本小题满分10分) 设 (1)若,求实数的值; (2)求在方向上的正射影的数量。
(满分14分) 已知:定义在R上的函数,对于任意实数a, b都满足,且,当. (Ⅰ)求的值; (Ⅱ)证明在上是增函数; (Ⅲ)求不等式的解集.