(本小题满分10分)如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°。用这两个转盘进行玩游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域数为,转盘(B)指针所对的区域为,、,设+的值为,每一次游戏得到奖励分为. (Ⅰ)求<2且>1的概率;(Ⅱ)某人进行了12次游戏,求他平均可以得到的奖励分.
已知复数是纯虚数。 (1)求的值; (2)若复数,满足,求的最大值。
二阶矩阵M对应的变换将点与分别变换成点与. (Ⅰ)求矩阵M的逆矩阵; (Ⅱ)设直线在变换M作用下得到了直线:,求直线的方程.
已知数列的各项都是正数,且满足: (1)求; (2)证明:
是否存在实数使得关于n的等式 成立?若存在,求出的值并证明等式,若不存在,请说明理由.
有4男3女共7位同学从前到后排成一列. (1)有多少种不同方法? (2)甲不站在排头,有多少种不同方法? (3)三名女生互不相邻,有多少种不同方法? (4)3名女生在队伍中按从前到后从高到矮顺序排列,有多少种不同方法? (5)3名女生必须站在一起,有多少种不同方法?