((本小题满分12分)已知动点M到点F(1,0)的距离比它到轴的距离大1个单位长度。(Ⅰ)求点M的轨迹C的方程;(Ⅱ)过点F任意作互相垂直的两条直线,分别交曲线C于点A、B和M、N,设线段AB、MN的中点分别为P、Q,求证:直线PQ恒过一个定点。
已知函数). (1)求函数的最小正周期; (2)若,求的值.
设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线x=. (1)求φ; (2)求函数y=f(x)的单调增区间; (3)画出函数y=f(x)在区间[0,π]上的图象.
在△ABC中,a,b,c分别为内角A,B,C的对边, 且2asinA=(2b+c)sinB+(2c+b)sinC. (1)求A的大小; (2)求sinB+sinC的最大值.
在△ABC中,中线长AM=2. (1)若=-2,求证:++=0; (2)若P为中线AM上的一个动点,求·(+)的最小值.
已知函数f(x)=2sincos+cos. (1)求函数f(x)的最小正周期及最值; (2)令g(x)=f,判断函数g(x)的奇偶性,并说明理由.