(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD平面CBED,如图(乙).(1)求证:平面FHG//平面ABE;(2)记表示三棱锥B-ACE 的体积,求的最大值;(3)当取得最大值时,求二面角D-AB-C的余弦值.
数列满足. (1)计算,,,,并由此猜想通项公式; (2)用数学归纳法证明(1)中的猜想.
设函数,. (1)解不等式; (2)若恒成立的充分条件是,求实数的取值范围.
数列的通项公式为,其前项和为. (1)求及的表达式; (2)若,求数列的前项和; (3)若,令,求的取值范围.
已知函数的最大值为. (Ⅰ)求常数的值; (Ⅱ)求函数的单调递增区间; (Ⅲ)若将的图象向左平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.
在中,所对的边分别为,,. (Ⅰ)求; (Ⅱ)求面积的最大值.