定义在R上的函数f(x)是最小正周期为2的奇函数, 且当x∈(0, 1)时, f (x)=.(1)求f (x)在[-1, 1]上的解析式; (2)证明f (x)在(—1, 0)上时减函数; (3)当λ取何值时, 不等式f (x)>λ在R上有解?
必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤. 在三棱锥ABCD中,平面DBC⊥平面ABC,△ABC为正三角形, AC=2,DC=DB=, (1)求DC与AB所成角的余弦值; (2)在平面ABD上求一点P,使得CP⊥平面AB D.
必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤. 某商场搞促销,当顾客购买商品的金额达到一定数量之后可以抽奖,根据顾客购买商品的金额,从箱中(装有4只红球,3只白球,且除颜色外,球的外部特征完全相同)每抽到一只红球奖励20元的商品(当顾客通过抽奖的方法确定了获奖商品后,即将小球全部放回箱中) (1)当顾客购买金额超过500元而少于1000元(含1000元)时,可从箱中一次随机抽取3个小红球,求其中至少有一个红球的概率; (2)当顾客购买金额超过1000元时,可一次随机抽取4个小球,设他所获奖商品的金额为元,求的概率分布列和数学期望.
(选做题)本大题包括A,B,C,D共4小题,请从这4题中选做2小题. 每小题10分,共20分.请在答题卡上准确填涂题目标记. 解答时应写出文字说明、证明过程或演算步骤.
已知实数满足,求的最小值;
(本小题共16分) 已知数列各项均不为0,其前项和为,且对任意都有(为大于1的常数),记f(n). (1)求; (2)试比较与的大小(); (3)求证:(2n-1)f(n)≤f(1)+f(2)+…+f(2n-1) ≤[1-()2n-1] (n∈N*)
(本小题共16分) 已知M(p, q)为直线x+y-m=0与曲线y=-的交点,且p<q,若f(x)=,λ、μ为正实数。求证:|f()-f()|<|p-q|