(本小题满分12分)一个袋子中装有黄、黑两色混合在一起的豆子20公斤(两种豆子的大小相同)。现从中随机抽取50粒豆子进行发芽试验,结果如下:发芽的黄、黑两种豆子分别是27粒和16粒,不发芽的黄、黑两种豆子分别是3粒和4粒。(Ⅰ)估计黄、黑两种豆子分别有多少公斤,以及整个袋子中豆子的发芽率;(Ⅱ)能不能有90%的把握认为发芽不发芽与豆子的颜色有关?(Ⅲ)从3粒黄豆和2粒黑豆中任取2粒,求这2粒豆子中黑豆数X的分布列和期望。
设分别是椭圆的左、右焦点. ⑴若是该椭圆上的一点,且,求的面积; ⑵若是该椭圆上的一个动点,求的最大值和最小值; ⑶设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.
已知点,,在抛物线()上,的重心与此抛物线的焦点重合(如图) ⑴写出该抛物线的方程和焦点的坐标; ⑵求线段中点的坐标; ⑶求所在直线的方程.
如图,已知正三棱柱—的底面边长是,是侧棱的中点,直线与侧面所成的角为. ⑴求此正三棱柱的侧棱长; ⑵求二面角的平面角的正切值; ⑶求直线与平面的所成角的正弦值.
已知圆与直线相交于两点. ⑴求弦的长; ⑵若圆经过,且圆与圆的公共弦平行于直线,求圆的方程.
已知函数. (1)若关于的方程只有一个实数解,求实数的取值范围; (2)若当时,不等式恒成立,求实数的取值范围; (3)探究函数在区间上的最大值(直接写出结果,不需给出演算步骤).