(本小题满分13分) 已知点A是抛物线y2=2px(p>0)上一点,F为抛物线的焦点,准线l与x轴交于点K, 已知|AK|=|AF|,三角形AFK的面积等于8. (Ⅰ)求p的值;(Ⅱ)过该抛物线的焦点作两条互相垂直的直线l1,l2,与抛物线相交得两条弦,两条弦的中点分别为G,H.求|GH|的最小值.
一个圆锥的高为2 cm,母线与轴的夹角为30°,求圆锥的母线长以及圆锥的轴截面的面积.
正六棱柱各棱长均为1,求一动点从A沿表面移动到点D1时最短的路程.
如右图所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M为AA1的中点,P是BC上一点,且由P沿棱柱侧面经过棱CC1到M的最短路线长为,设这条最短路线与CC1的交点为N.求: (1)该三棱柱的侧面展开图的对角线长; (2)PC和NC的长.
长方体ABCD—A1B1C1D1(如右图所示),宽、长、高分别为3、4、5,现有一甲壳虫从A出发沿长方体表面爬行到C1来获取食物,试画出它的最短爬行路线,并求其路程的最小值.
如右图P、Q分别是A1B1、BB1的四等分点,M、N分别是D1C1、CC1的中点.沿M→N→Q→P截去一部分,截去的几何体是什么?剩下的几何体也是吗?