已知函数.(Ⅰ)若函数的图象在处的切线方程为求的值;(Ⅱ)若函数在上是增函数,求实数的最大值.
(本小题满分14分)已知在单位圆x²+y²=1上任取一点M,作MN⊥x轴,垂足为N, = 2. (Ⅰ)求动点Q的轨迹的方程; (Ⅱ)设点,点为曲线上任一点,求点到点距离的最大值; (Ⅲ)在的条件下,设△的面积为(是坐标原点,是曲线上横坐标为的点),以为边长的正方形的面积为.若正数满足,问是否存在最小值,若存在,请求出此最小值,若不存在,请说明理由.
(本小题满分13分) 袋中有大小相同的三个球,编号分别为1、2和3,从袋中每次取出一个球,若取到的球的编号为偶数,则把该球编号加1(如:取到球的编号为2,改为3)后放回袋中继续取球;若取到球的编号为奇数,则取球停止,用表示所有被取球的编号之和. (Ⅰ)求的概率分布; (Ⅱ)求的数学期望与方差.
(本小题满分12分) 在边长为2的正方体中,E是BC的中点,F是的中点 (1)求证:CF∥平面 (2)求二面角的平面角的余弦值.
(本小题满分12分) 甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在8,9,10环,且每次射击击中与否互不影响.甲、乙射击命中环数的概率如表:
(Ⅰ)若甲、乙两运动员各射击1次,求甲运动员击中8环且乙运动员击中9环的概率; (Ⅱ)若甲、乙两运动员各自射击2次,求这4次射击中恰有3次击中9环以上(含9环)的概率.
(本小题12分) 如图,在中,为边上的高,,沿将翻折,使得得几何体 (Ⅰ)求证:; (Ⅱ)求点D到面ABC的距离。