如图,在以点 O 为圆心, A B = 4 为直径的半圆 A D B 中, O D ⊥ A B , P 是半圆弧上一点, ∠ P O B = 30 ° ,曲线 C 是满足 M A - M B 为定值的动点 M 的轨迹,且曲线 C 过点 P .
(Ⅰ)建立适当的平面直角坐标系,求曲线 C 的方程; (Ⅱ)设过点 D 的直线 l 与曲线 C 相交于不同的两点 E , F .若 △ O E F 的面积不小于 2 2 ,求直线 l 斜率的取值范围.
随着机构改革工作的深入进行,各单位要减员增效,有一家公司现有职员2a人(140<2a<420,且a为偶数,每人每年可创利10万元.据评估,在经营条件不变的前提下,若裁员x人,则留岗职员每人每年多创利0.1x万元,但公司需付下岗职员每人每年4万元的生活费,并且该公司正常运转情况下,所裁人数不超过50人,为获得最大的经济效益,该公司应裁员多少人?
已知圆C的半径为2,圆心在x轴的正半轴上,直线与圆C相切. (I)求圆C的方程; (II)过点Q(0,-3)的直线l与圆C交于不同的两点A、B,当时,求△AOB的面积.
如图所示,已知矩形ABCD所在平面,M、N分别是AB、PC的中点。 (1)求证:平面PAD; (2)求证:
设是定义在R上的函数 (1)f(x)可能是奇函数吗? (2)当a=1时,试研究f(x)的单调性
已知△ABC的三个顶点分别为A(2,3),B(-1,-2),C(-3,4),求 (1)BC边上的中线AD所在的直线方程; (2)△ABC的面积