如图,在以点 O 为圆心, A B = 4 为直径的半圆 A D B 中, O D ⊥ A B , P 是半圆弧上一点, ∠ P O B = 30 ° ,曲线 C 是满足 M A - M B 为定值的动点 M 的轨迹,且曲线 C 过点 P .
(Ⅰ)建立适当的平面直角坐标系,求曲线 C 的方程; (Ⅱ)设过点 D 的直线 l 与曲线 C 相交于不同的两点 E , F .若 △ O E F 的面积不小于 2 2 ,求直线 l 斜率的取值范围.
2014年11月10日APEC会议在北京召开,某服务部需从大学生中招收志愿者,被招收的志愿者需参加分笔试和面试两部分,把参加笔试的 40 名大学生的成绩分组: 第 1 组[75,80),第 2 组 [80,85),第 3 组[85, 90),第 4 组 [90, 95),第 5 组[95,100),得到频率分布直方图如图所示: (Ⅰ)分别求成绩在第4,5组的人数; (Ⅱ)现决定在笔试成绩较高的第 3,4,5 组中用分层抽样抽取 6 名进入面试, ①已知甲的成绩均在第4组,求甲进入面试的概率; ②若从这6名学生中随机抽取2名学生接受考官D的面试,设第3组中有名学生被考官D面试的概率.
设是圆上的点,过作直线垂直轴于点,为上一点,且,当点在圆上运动时,记点的轨迹为曲线. (Ⅰ)求曲线的方程; (Ⅱ)设动点满足,其中是曲线上的点,为原点,直线与的斜率之积为,求证:为定值.
选修4-5:不等式选讲 设函数. (Ⅰ)当时,若不等式的解集为或,求的值; (Ⅱ)若对恒成立,求的取值范围.
选修4-4:坐标系与参数方程 已知曲线C的极坐标方程为,以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线经过定点,倾斜角为. (Ⅰ)写出直线的参数方程和曲线C的标准方程; (Ⅱ)设直线与曲线C相交于A、B两点,求的值.
已知. (Ⅰ)若的单调减区间是,求实数的值; (Ⅱ)设有两个极值点, 且若恒成立,求的最大值.