如图,在以点 O 为圆心, A B = 4 为直径的半圆 A D B 中, O D ⊥ A B , P 是半圆弧上一点, ∠ P O B = 30 ° ,曲线 C 是满足 M A - M B 为定值的动点 M 的轨迹,且曲线 C 过点 P .
(Ⅰ)建立适当的平面直角坐标系,求曲线 C 的方程; (Ⅱ)设过点 D 的直线 l 与曲线 C 相交于不同的两点 E , F .若 △ O E F 的面积不小于 2 2 ,求直线 l 斜率的取值范围.
(本小题满分12分) 一缉私艇A发现在北偏东方向,距离12 nmile的海面上有一走私船C正以10 nmile/h的速度沿东偏南方向逃窜.缉私艇的速度为14 nmile/h, 若要在最短的时间内追上该走私船,缉私艇应沿北偏东的方向去追,.求追及所需的时间和角的正弦值.
(本小题满分12分) 在中,分别是角A、B、C的对边,且 (1)求角B的大小; (2)若,求的面积.
已知数列{an}的前n项和, (1)求数列{an}的通项公式; (2)求前n项和的最大值,并求出相应的的值.
(本小题满分12分) 在△ABC中,已知,c=1,,求A ,C, a.
已知是定义在上的奇函数,当时, (1)求的解析式; (2)是否存在负实数,使得当的最小值是4?如果存在,求出的值;如果不存在,请说明理由. (3)对如果函数的图像在函数的图像的下方,则称函数在D上被函数覆盖.求证:若时,函数在区间上被函数覆盖.