:如图,ABCD是块矩形硬纸板,其中AB=2AD= 2,E为DC中点,将它沿AE折成直二面角D-AE-B. (Ⅰ)求证:AD⊥平面BDE;(Ⅱ)求二面角B-AD-E的余弦值.
(本小题满分13分) 已知抛物线经过点A(2,1),过A作倾斜角互补的两条不同直线. (1) 求抛物线W的方程及准线方程; (2) 当直线与抛物线W相切时,求直线的方程; (3) 设直线分别交抛物线W于B、C两点(均不与4重合),若以线段BC为直径的圆与抛物线的准线相切,求直线BC的方程.
(本小题满分〗2分) 在三棱锥S -ABC中,是边长为4的正三角形,点S在平面ABC上的射影恰为AC的中点,,M、N分别为AB、SB的中点. (1) 证明AC丄SB; (2) 求直线CN与平面ABC所成角的余弦值; (3) 求点B到平面CMN的距离
(本小题满分12分) 在医学生物学实验中,经常以小老鼠作为实验对象.在甲笼子里关有7只小老鼠(其中5只白色的,2只灰色的),由于都感染了某种烈性病菌,所以想让它们自行分开.以便于进行观察、试验.现有乙笼子是空的,把甲笼子打开一个小孔(只能让小鼠钻出去,再进不来),让小鼠一只一只地往乙笼子跑(假定它们都会争先恐后地从小孔往乙笼跑),直到两只小灰鼠都跑出甲笼子,立即关闭小孔.以f表示甲笼子里还剩下的小白鼠的数目 (1) 求乙笼子里恰好只有2只小灰鼠的概率; (2) 求的分布列与数学期望.
(本小题满分12分) 巳知函数 (1) 求.的值域; (2) 求...的单调递增区间.
(本小题满分14分) 已知数列是首项为,公差为的等差数列,是首项为,公比为的等比数列,且满足,其中. (Ⅰ)求的值; (Ⅱ)若数列与数列有公共项,将所有公共项按原顺序排列后构成一个新数列,求数列的通项公式; (Ⅲ)记(Ⅱ)中数列的前项之和为,求证:.