如图,四棱锥的底面是正方形,每条侧棱的长都是底面边长的倍,为侧棱上的点。(Ⅰ)求证:; (Ⅱ)若平面,求二面角的大小;(Ⅲ)在(Ⅱ)的条件下,侧棱上是否存在一点, 使得平面。若存在,求的值;若不存在,试说明理由。
(本小题满分13分)等差数列中,首项,公差,前n项和为,已知数列成等比数列,其中,,.(Ⅰ)求数列,的通项公式;(Ⅱ)令,数列的前n项和为.若存在一个最小正整数M,使得当时,()恒成立,试求出这个最小正整数M的值.
(本小题满分13分)函数.(Ⅰ)若,在处的切线相互垂直,求这两个切线方程;(Ⅱ)若单调递增,求的范围.
(本小题满分12分)已知数列的各项均为正数,且前项之和满足,且,,成等比数列.(1)求数列的通项公式;(2)若数列的前项和为,求.
(本小题满分13分)如图,在六面体中,平面∥平面,平面,,,∥,且,.(1)求证:平面平面;(2)求证:∥平面;(3)求三棱锥的体积.
(本小题满分12分)某学校共有教职工900人,分成三个批次进行继续教育培训,在三个批次中男、女教职工人数如下表所示. 已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16 .
(1)求的值;(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查, 问应在第三批次中抽取教职工多少名?(3)已知,求第三批次中女教职工比男教职工多的概率.