经市场调查,某种商品在过去50天的销量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N),前30天价格为g(t)=t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).(1)写出该种商品的日销售额S与时间t的函数关系式;(2)求日销售额S的最大值.
已知的展开式中第3项的系数与第5项的系数之比为. (1)求的值;(2)求展开式中的常数项.
用数学归纳法证明:.
如图,在正方体中,是棱的中点,在棱上. 且,若二面角的余弦值为,求实数的值.
当实数取何值时,复数(其中是虚数单位). (1)是实数;(2)是纯虚数;(3)等于零.
已知圆,直线l: (1)求圆C的普通方程.若以原点为极点,以x轴的正半轴为极轴建立极坐标系,写出圆C的极坐标方程. (2)判断直线l与圆C的位置关系,并说明理由;若相交,请求出弦长