设等比数列,其中,,.(1)求,的值.(2)求使的最小正整数的值.
(本题满分15分) 已知实数a满足1<a≤2,设函数f (x)=x3-x2+ax.(Ⅰ) 当a=2时,求f (x)的极小值;(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x (b∈R) 的极小值点与f (x)的极小值点相同,求证:g(x)的极大值小于等于10.
(本题满分14分) 如图,在三棱柱BCD-B1C1D1与四棱锥A-BB1D1D的组合体中,已知BB1⊥平面BCD,四边形ABCD是平行四边形,∠ABC=120°,AB=,AD=3,BB1=1.(Ⅰ) 设O是线段BD的中点,求证:C1O∥平面AB1D1;(Ⅱ) 求直线AB1与平面ADD1所成的角.
(本题满分14分) 设首项为a1,公差为d的等差数列{an}的前n项和为Sn.已知a7=-2,S5=30.(Ⅰ) 求a1及d;(Ⅱ) 若数列{bn}满足an= (n∈N*),求数列{bn}的通项公式.
(本题满分14分)在锐角△ABC中,cos B+cos (A-C)=sin C. (Ⅰ) 求角A的大小;(Ⅱ) 当BC=2时,求△ABC面积的最大值.
(本题满分14分) 已知实数a满足0<a≤2,a≠1,设函数f (x)=x3-x2+ax.(Ⅰ) 当a=2时,求f (x)的极小值;(Ⅱ) 若函数g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的极小值点与f (x)的极小值点相同.求证:g(x)的极大值小于等于.求a,b及c的值.