如图,正三棱柱中,,是侧棱的中点.(Ⅰ)证明:;(Ⅱ)求二面角的大小.
数列{an}是公比为的等比数列,且1-a2是a1与1+a3的等比中项,前n项和为Sn;数列{bn}是等差数列,b1=8,其前n项和Tn满足Tn=n·bn+1(为常数,且≠1).(I)求数列{an}的通项公式及的值;(Ⅱ)比较+++ +与Sn的大小.
已知向量,设函数.求的最小正周期与单调递增区间;在中,分别是角的对边,若,,求的最大值.
在平面直角坐标系中,已知椭圆的左焦点为,且椭圆的离心率.(1)求椭圆的方程;(2)设椭圆的上下顶点分别为,是椭圆上异于的任一点,直线分别交轴于点,证明:为定值,并求出该定值;(3)在椭圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.
已知函数,,其中R.(1)讨论的单调性;(2)若在其定义域内为增函数,求正实数的取值范围;(3)设函数,当时,若,,总有成立,求实数的取值范围.
已知数列的前项和为,数列是公比为的等比数列, 是和的等比中项.(1)求数列的通项公式;(2)求数列的前项和.