(本小题12分)已知抛物线,焦点为,顶点为,点在抛物线上移动,是的中点。(1)求点的轨迹方程;(2)若倾斜角为60°且过点的直线交的轨迹于两点,求弦长。
(本小题满分12分)已知函数的最小值为求函数的解析式。
(本小题满分10分)已知定义域为的函数满足;①对于f(x)定义域内的任意实数x,都有②当(I)求定义域上的解析式;(II)解不等式:
(本小题满分15分)已知函数.(I) 若,求曲线在点处的切线方程;若函数在其定义域内为增函数,求正实数的取值范围;(III)设函数,若在上至少存在一点,使得成立,求实数的取值范围.
(本小题满分15分)已知O为坐标原点,点A、B分别在x轴,y轴上运动,且|AB|=8,动点P满足=,设点P的轨迹为曲线C,定点为M(4,0),直线PM交曲线C于另外一点Q.(1)求曲线C的方程;(2)求△OPQ面积的最大值.
(本小题满分14分)已知定义域为R的函数是奇函数.(1)求a的值;(2)判断的单调性(不需要写出理由);(3)若对任意的,不等式恒成立,求的取值范围.