对某校高三年级学生参加社区服务次数进行统计,随机抽取名学生作为样本,得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下: (Ⅰ)求出表中及图中的值;(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间 内的人数;(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间内的概率.
已知椭圆中心在原点,一个焦点为,且长轴长与短轴长的比是。 (1)求椭圆的方程;(5分) (2)是否存在斜率为的直线,使直线与椭圆有公共点,且原点与直线的距离等于4;若存在,求出直线的方程,若不存在,说明理由。(7分)。
(12分)已知双曲线与椭圆有相同焦点,且经过点, 求该双曲线方程,并求出其离心率、渐近线方程,准线方程。
(12分) 已知圆过两点,且圆心在上. (1)求圆的方程; (2)设是直线上的动点,是圆的两条切线,为切点,求四边形面积的最小值.
(10分)已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x0∈R,x+2ax0+2-a=0”,若命题“p且q”是真命题,求实数a的取值范围.
把命题“全等三角形一定相似”写成“若p则q”的形式,并写出它的逆命题、否命题与逆否命题。