设为实数,函数.(1)若,求的取值范围;(2)讨论的单调性;(3)当时,讨论在区间内的零点个数.
.(本小题满分13分) 已知数列是各项均不为的等差数列,公差为,为其前项和.向量、满足,.数列满足,为数列的前n项和. (Ⅰ)求、和; (Ⅱ)若对任意的,不等式恒成立,求实数的取值范围.
(本小题满分13分) 由于当前学生课业负担较重,造成青少年视力普遍下降,现从某中学随机抽取16名学生,经校医用对数视力表检査得到每个学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶)如右: (Ⅰ)若视力测试结果不低于5.0,则称为“好视力”,求校医从这16人中随机选取3人,至多有1人是“好视力”的概率; (Ⅱ)以这16人的样本数据来估计整个学校的总体数据,若从该校(人数很多)任选3人,记表示抽到“好视力”学生的人数,求的分布列及数学期望.
(本小题满分13分) 已知三棱锥,平面,,,. (Ⅰ)把△(及其内部)绕所在直线旋转一周形成一几何体,求该几何体的体积; (Ⅱ)求二面角的余弦值.
(本小题满分14分) 已知函数,其中常数. (Ⅰ)当时,求函数的极值点; (Ⅱ)令,若函数在区间上单调递增,求的取值范围; (Ⅲ)设定义在D上的函数在点处的切线方程为当时,若在D内恒成立,则称P为函数的“特殊点”,请你探究当时,函数是否存在“特殊点”,若存在,请最少求出一个“特殊点”的横坐标,若不存在,说明理由.
(本小题满分12分) 为了加快经济的发展,某市选择A、B两区作为龙头带动周边地区的发展,决定在A、B两区的周边修建城际快速通道,假设A、B两区相距个单位距离,城际快速通道所在的曲线为E,使快速通道E上的点到两区的距离之和为4个单位距离. (Ⅰ)以线段AB的中点O为原点建立如图所示的直角坐标系,求城际快速通道所在曲线E的方程; (Ⅱ)若有一条斜率为的笔直公路l与曲线E交于P,Q两点,同时在曲线E上建一个加油站M(横坐标为负值)满足,求面积的最大值.