如图,在正四棱台中,,,,、分别是、的中点. (Ⅰ)求证:平面∥平面;(Ⅱ)求二面角的余弦值的大小.注:底面为正方形,从顶点向底面作垂线,垂足是底面中心,这样的四棱锥叫做正四棱锥.用一个平行于正四棱锥底面的平面去截该棱锥,底面与截面之间的部分叫做正四棱台.
(本小题满分12分)等差数列中,,其前项和为.等比数列的各项均为正数,,且,.(1)求数列与的通项公式;(2)求数列的前项和.
(本小题满分10分)选修4—5:不等式选讲已知函数.(Ⅰ)求不等式的解集;(Ⅱ)若关于的不等式恒成立,求实数的取值范围.
(本小题满分10分)选修4—5:坐标系与参数方程在直角坐标系中,半圆C的参数方程为(为参数,),以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求C的极坐标方程;(Ⅱ)直线的极坐标方程是,射线OM:与半圆C的交点为O、P,与直线的交点为Q,求线段PQ的长.
(本小题满分12分)已知抛物线y2="2px" (p>0)上点T(3,t)到焦点F的距离为4. (Ⅰ)求t,p的值; (Ⅱ)设A、B是抛物线上分别位于x轴两侧的两个动点,且 (其中 O为坐标原点). (ⅰ)求证:直线AB必过定点,并求出该定点P的坐标; (ⅱ)过点P作AB的垂线与抛物线交于C、D两点,求四边形ACBD面积的最小值.
(本小题满分12分)如图,PA平面ABCD,四边形ABCD为矩形,PA=AB=,AD=1,点F是PB的中点,点E在边BC上移动.(Ⅰ)当点E为BC的中点时, 证明EF//平面PAC;(Ⅱ)求三棱锥E-PAD的体积;(Ⅲ)证明:无论点E在边BC的何处,都有PEAF.