(本小题满分12分)已知抛物线y2="2px" (p>0)上点T(3,t)到焦点F的距离为4. (Ⅰ)求t,p的值; (Ⅱ)设A、B是抛物线上分别位于x轴两侧的两个动点,且 (其中 O为坐标原点). (ⅰ)求证:直线AB必过定点,并求出该定点P的坐标; (ⅱ)过点P作AB的垂线与抛物线交于C、D两点,求四边形ACBD面积的最小值.
(本小题满分13分)已知函数,集合,集合. (1)求集合对应区域的面积; (2)若点,求的取值范围.
(本小题满分12分)设锐角三角形的内角的对边分别为,且. (1)求的大小; (2)求的取值范围.
(本小题满分12分)如图,等腰梯形ABCD的底边AB和CD长分别为6和,高为3. (1)求这个等腰梯形的外接圆E的方程; (2)若线段MN的端点N的坐标为(5,2),端点M在圆E上运动,求线段MN的中点P的轨迹方程.
(本小题满分12分)已知等比数列的各项均为正数,且,. (1)求数列的通项公式; (2)设,求数列的前项和.
(本小题满分12分)三角形的三个顶点是,,. (1)求AB边的中线所在直线的方程; (2)求BC边的高所在直线的方程; (3)求直线与直线的交点坐标.