(本小题12分)如图,已知椭圆的长轴为,过点的直线与轴垂直.直线所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率。(1)求椭圆的标准方程;(2)设是椭圆上异于、的任意一点,轴,为垂足,延长到点使得,连结延长交直线于点,为的中点.试判断直线与以为直径的圆的位置关系。
设函数f(x)=log3(9x)·log3(3x),≤x≤9. (1)若m=log3x,求m的取值范围. (2)求f(x)的最值,并给出最值时对应的x的值.
(14分)已知. (1)求的单调区间和极值; (2)是否存在,使得在的切线相同?若存在,求出及在处的切线;若不存在,请说明理由; (3)若不等式在恒成立,求的取值范围.
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,点(1,)在该椭圆上. (1)求椭圆C的方程; (2)过的直线与椭圆C相交于A,B两点,以为圆心为半径的圆与直线相切,求AB的面积.
在三棱锥P-ABC中,. (1)求证:平面平面; (2)求BC与平面PAB所成角的正弦值.
已知函数(). (1)求函数的最小正周期及在区间上的值域; (2)在中,,.若,求的面积.