如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD、AB距离分别为9m、3m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF,MN∶NE=16∶9.线段MN必须过点P,端点M、N分别在边AD、AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2). (1)用x的代数式表示AM;(2)求S关于x的函数关系式及该函数的定义域;(3)当x取何值时,液晶广告屏幕MNEF的面积S最小?
已知集合 , , 求.
在中,角所对的边分别为, 且成等差数列,成等比数列. 求证:为等边三角形.
(本小题满分12分) 已知函数且导数. (1)试用含有的式子表示,并求的单调区间; (2)对于函数图象上不同的两点,且,如果在函数图像上存在点(其中)使得点处的切线,则称存在“相依切线”.特别地,当时,又称存在“中值相依切线”.试问:在函数上是否存在两点使得它存在“中值相依切线”?若存在,求的坐标,若不存在,请说明理由.
(本小题满分12分) 某学校要对学生进行身体素质全面测试,对每位学生都要进行选考核(即共项测试,随机选取项),若全部合格,则颁发合格证;若不合格,则重新参加下期的选考核,直至合格为止,若学生小李抽到“引体向上”一项,则第一次参加考试合格的概率为,第二次参加考试合格的概率为,第三次参加考试合格的概率为,若第四次抽到可要求调换项目,其它选项小李均可一次性通过. (1)求小李第一次考试即通过的概率; (2)求小李参加考核的次数分布列.
(本小题满分12分) 设. (1)若在其定义域内为单调递增函数,求实数的取值范围; (2)设,且,若在上至少存在一点,使得成立,求实数的取值范围.