设有一个等边三角形网格,其中各个最小等边三角形的边长都是 cm,现用直径等于2 cm的硬币投到此网格上,求硬币落下后与格线没有公共点的概率.
(本小题满分12分) 设函数 (1)求函数的单调区间; (2)已知对任意恒成立,求实数的取值范围.
(本小题满分13分) 如图,已知正三棱柱的底面正三角形的边长是2,D是的中点,直线与侧面所成的角是. ⑴求二面角的大小; ⑵求点到平面的距离.
(本小题满分13分) 甲、乙、丙三人按下面的规则进行乒乓球比赛:第一局由甲、乙参加而丙轮空,以后每一局由前一局的获胜者与轮空者进行比赛,而前一局的失败者轮空.比赛按这种规则一直进行到其中一人连胜两局或打满6局时停止.设在每局中参赛者胜负的概率均为,且各局胜负相互独立.求: (Ⅰ)打满3局比赛还未停止的概率; (Ⅱ)比赛停止时已打局数的分布列与期望E.
. (本小题满分13分) 已知函数(),且函数的最小正周期为. ⑴求函数的解析式; ⑵在△中,角所对的边分别为.若,,且,试求的值.
(23)(本小题满分10分)选修4-4:坐标系与参数方程 已知直线C1(t为参数),C2(为参数), (Ⅰ)当=时,求C1与C2的交点坐标; (Ⅱ)过坐标原点O作 C1的垂线,垂足为A,P为OA中点,当变化时,求P点的轨迹的参数方程,并指出它是什么曲线.