(本小题满分13分)某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业技能进行测试。在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为 (I)求该小组中女生的人数; (II)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为,每个男生通过的概率均为,现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量,求的分布列和数学期望。
(本小题满分12分)工厂生产某种产品,次品率p与日产量x(万件)间的关系为已知每生产1件合格产品盈利3元,每出现重件次品亏损1.5元. (I)将日盈利额y(万元)表示为日产量(万件)的函数; (Ⅱ)为使日盈利额最大,日产量应为多少万件?(注:次品率=×100%)
(本小题满分12分)已知等差数列{an}的首项,前n项和为Sn,且S4+a2=2S3;等比数列{bn}满足b1=a2,b2=a4(Ⅰ)求证:数列{bn}中的每一项都是数列{an}中的项; (Ⅱ)若a1=2,设,求数列{cn}的前n项的和Tn (Ⅲ)在(Ⅱ)的条件下,若有的最大值.
(本小题满分12分) 如图1,矩形ABCD中,AB=2AD=2a,E为DC的中点,现将△ADE沿AE折起,使平面ADE⊥平面ABCE,如图2.(I)求二面角A—BC—D的正切值;
(Ⅱ)求证:AD⊥平面BDE.
(本小题满分12分)向量a=(sinωx+cosωx,1),b=(f(x),simωx),其中0<ω<l,且a∥b.将f(x)的图象沿x轴向左平移个单位,沿y轴向下平移个单位,得到g(x)的图象,已知g(x)的图象关于(,0)对称(I)求ω的值; (Ⅱ)求g(x)在[0,4π]上的单调递增区间.
(本小题满分12分) 已知集合;命题p:x ∈ A,命题q:x∈B,并且命题p是命题q的充分条件,求实数m的取值范围.