(本小题满分10分)已知命题:函数为定义在上的单调递减函数,实数满足不等式.命题:当时,方程有解.求使“且”为真命题的实数的取值范围.
(本题满分13分) 已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过、、 三点. (1)求椭圆的方程:(2)若点D为椭圆上不同于、的任意一点,,当内切圆的面积最大时。求内切圆圆心的坐标;(3)若直线与椭圆交于、两点,证明直线与直线的交点在定直线上并求该直线的方程.
棱长为4的正四面体与一个球,若球与正四面体的六条棱都相切,求这个球的体积.
已知函数 的最小正周期为,最小值为,图象经过点,求该函数的解析式.
已知函数的最大值为1,最小值为-3,试确定的单调区间.
设和求的值.