袋子里有大小相同的3个红球和4个黑球,今从袋子里随机取球. (Ⅰ)若有放回地摸出4个球,求取出的红球数不小于黑球数的概率; (Ⅱ)若无放回地摸出4个球,①求取出的红球数ξ的概率分布列和数学期望;②求取出的红球数不小于黑球数的概率,并比较的大小.
(本小题满分13分)计算下列各式的值 ⑴ ; ⑵ .
(本小题满分13分).设全集U=R,集合, (1)求; (2)若集合=,满足,求实数的取值范围.
(本题14分)数列的首项。 (1)求证是等比数列,并求的通项公式; (2)已知函数是偶函数,且对任意均有,当 时,,求使恒成立的的取值范围。
(本题13分)已知数列其前项和,满足,且。 (1)求的值; (2)求数列的通项公式;
(本题12分)某汽车厂有一条价值为万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值万元与技术改造投入万元之间满足:①与成正比;②当时,,并且技术改造投入满足,其中为常数且。 (1)求表达式及定义域; (2)求出产品增加值的最大值及相应的值。