(本小题满分12分)某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490, 495],(495, 500],……,(510, 515],由此得到样本的频率分布直方图,如图所示.根据频率分布直方图,(1)求重量超过500克的产品的频率;(2)求重量不超过500克的产品的数量.
设的三个内角,向量,且 (1)求角的大小; (2)若的三边长构成公差为4的等差数列,求△ABC的面积。
已知等差数列的前n项和为,。 (1)求的通项; (2)数列为等比数列,,求的前8项和。
已知,,分别求、及的范围。
已知焦点在轴,顶点在原点的抛物线经过点P(2,2),以上一点为圆心的圆过定点(0,1),记为圆与轴的两个交点. (1)求抛物线的方程; (2)当圆心在抛物线上运动时,试判断是否为一定值?请证明你的结论; (3)当圆心在抛物线上运动时,记,,求的最大值.
已知函数. (1)若,解方程; (2)若函数在上单调递增,求实数的取值范围; (3)若且不等式对一切实数恒成立,求的取值范围