已知等差数列, (1) 求的通项公式;(2) 令,求数列的前项和.
函数()的部分图像如右所示. (1)求函数的解析式; (2)设,且,求的值.
设等差数列的公差,等比数列为公比为,且,,. (1)求等比数列的公比的值; (2)将数列,中的公共项按由小到大的顺序排列组成一个新的数列,是否存在正整数(其中)使得和都构成等差数列?若存在,求出一组的值;若不存在,请说明理由.
已知定义在区间上的函数的图象关于直线对称,当时,函数,其图象如图所示. (Ⅰ)求函数在的表达式; (Ⅱ)求方程的解; (Ⅲ)是否存在常数的值,使得上恒成立;若存在,求出的取值范围;若不存在,请说明理由.
某海边旅游景点有50辆自行车供游客租赁使用,管理这些自行车的费用是每日115元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。为了便于结算,每辆自行车的日租金(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得). (Ⅰ)求函数的解析式及其定义域; (Ⅱ)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?
阅读下面材料: 根据两角和与差的正弦公式,有------①------② 由①+② 得------③ 令有 代入③得 . (Ⅰ)类比上述推证方法,根据两角和与差的余弦公式,证明:; (Ⅱ)若的三个内角满足,试判断的形状.