已知:以点C (t, )(t∈R , t≠ 0)为圆心的圆与轴交于点O, A,与y轴交于点O, B,其中O为原点.(1)求证:△OAB的面积为定值;(2)设直线y = –2x+4与圆C交于点M, N,若OM = ON,求圆C的方程.
已知抛物线通过点,且在点处与直线相切,求实数a、b、c的值.
求下列函数的导数:;
定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称为函数的上界. 已知函数. (1)当时,求函数在上的值域,并判断函数在上是否为有界函数,请说明理由; (2)若函数在上是以3为上界的有界函数,求实数的取值范围.
在直三棱柱中,, ,是的中点,是上一点,且. (1)求证:平面; (2)求三棱锥的体积; (3)试在上找一点,使得平面.
已知函数,常数. (1)讨论函数的奇偶性,并说明理由; (2)若函数在上为增函数,求的取值范围