(本小题满分l2分)已知椭圆的的右顶点为A,离心率,过左焦点作直线与椭圆交于点P,Q,直线AP,AQ分别与直线交于点.(Ⅰ)求椭圆的方程;(Ⅱ)证明以线段为直径的圆经过焦点.
已知集合A={a,b,c},其中a,b,c是三个连续的自然数。如果a,b,c能够作为一个三角形的三边长,且该三角形的最大角是最小角的2倍,求所有满足条件的集合A。
(本小题满分12分) 某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出商品件数与商品单价的降低值x (单位:元,0≤x≤30)的平方成正比,已知商品单价降低2元时,一星期多卖出24件。 (1)将一个星期的商品销售利润表示成x的函数; (2)如何定价才能使一个星期的商品销售利润最大?
数列{an}是等差数列,,,,其中,数列{an}前n项和存在最小值。 (1)求通项公式an (2)若,求数列的前n项和
已知向量,, (1)求函数最小正周期; (2)当,求函数的最大值及取得最大值时的;
(本小题满分10分) 如图,在中,,BE是角平分线,交AB于D,是的外接圆。 (1)求证:AC是的切线;(2)如果AD=6,AE=,求BC的长。