(本小题满分l2分)某市第一中学要用鲜花布置花圃中五个不同区域,要求同一区域上用同一种颜色的鲜花,相邻区域使用不同颜色的鲜花.现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择.(1)当区域同时用红色鲜花时,求布置花圃的不同方法的种数;(2)求恰有两个区域用红色鲜花的概率;(3)记为花圃中用红色鲜花布置的区域的个数,求随机变量的分布列及其数学期望.
(1)证明:当时,不等式成立; (2)要使上述不等式成立,能否将条件“”适当放宽?若能,请放宽条件并简述理由;若不能,也请说明理由; (3)请你根据(1)、(2)的证明,试写出一个类似的更为一般的结论,且给予证明.
安排5个大学生到三所学校支教,设每个大学生去任何一所学校是等可能的. (1)求5个大学生中恰有2个人去校支教的概率; (2)设有大学生去支教的学校的个数为,求的分布列.
数列中,,前项的和记为. (1)求的值,并猜想的表达式; (2)请用数学归纳法证明你的猜想.
三个元件正常工作的概率分别为,将它们中某两个元件并联后再和第三个元件串联接入电路. (1)在如图的一段电路中,电路不发生故障的概率是多少? (2)三个元件按要求连成怎样的一段电路时,才能使电路中不发生故障的概率最大?请画出此时的电路图并说明理由.
在二项式的展开式中,恰好第五项的二项式系数最大. (1)求展开式中各项的系数和; (2)求展开式中的有理项.