一盒中装有分别标记着1,2,3,4数字的4个小球,每次从袋中取出一只球,设每只小球被取出的可能性相同.(I)若每次取出的球不放回盒中,现连续取三次球,求恰好第三次取出的球的标号为最大数字的球的概率;(II)若每次取出的球放回盒中,然后再取出一只球,现连续取三次球,这三次取出的球中标号最大数字为,求的概率分布列与期望.
(本小题满分12分) 为考察某种药物预防疾病的效果,进行动物试验,调查了105个样本,统计结果为:服用药的共有55个样本,服用药但患病的仍有10个样本,没有服用药且未患病的有30个样本.(1)根据所给样本数据画出2×2列联表;(2)请问能有多大把握认为药物有效?
(本题满分14分)设函数. (Ⅰ)若, ⑴求的值; ⑵在存在,使得不等式成立,求c最小值。(参考数据) (Ⅱ)当上是单调函数,求的取值范围。
(本题满分12分) 用数学归纳法证明:()
(本题满分12分)某地区预计从2011年初开始的第月,商品A的价格(,价格单位:元),且第月该商品的销售量(单位:万件).(1)2011年的最低价格是多少?(2)2011年的哪一个月的销售收入最少?
(本题满分12分)已知都是正数,且求的最小值.